Code Generator User Guide

Code GENErator USEI GUITE.......cviviitiiiiiiesiieieie ettt sttt sttt sbe b snenreeneas
L1000 od 1o} o ST
Fundamental Principle of Code Generation: Template + data model = output..............c.c.........
Framework CONFIQUIATION.oiiiiiiiieie it
YOUP FIrSt COUE GENEIALON......c.viiiieitiiiieieetieie ettt bbb et sbesbesbesbesnenreeneas
MOTEI FACTOMY ... bbbttt be e
Code Generation CoNFIGUIALIONccoueiieieeieceese e e e ae e nes
Code Generation REPOIToiiiiiiie e

Class AN INTEITACEciiiieieiee e bbbt

Introduction

Codejen Framework is a source code generation framework that allows application developers
to write their own code generators. This document tries to guide the users of the framework

(the application developers) how to create a simple code generator. Afterwards, the developers
can create their own the code generator, codegen config, and templates for specific application.

This document introduces the concept of code generator, describes the configuration to use the
framework, goes through the code generator creation process with readers, and describes the
specification of the default implementation.

Fundamental Principle of Code Generation: Template +
data model = output®

There are two elements you need to generate a piece of source code. They are the templates and
data model. A template is a piece of document that describing the similar structure of your
output. A template has fields to specify the position so that you can put in your data inside.
Such data is known as the data model. Take a look at the following JavaBean template as an
example:

k | . k N ;
package ${class.packageName}; _ Package of the bean

class ${class.name} {

Name of the bean

<#list aKeys as attrName
private ${attributeSet
</#list>

rName]} ${attrName};

<#list aKeys as attrName> Fields of the bean
public ${attributeSet[attrName]} get${attrName?cap First}(Q{
return this.${attrNamy;
}

public void set${attrName?cap Firss}(${attributeSet[attrName]}
${attrName}){ Getters and setters of
return this.${attrName} = ${attrName}; the bean
3

</#list>
+

The template above describes a JavaBean that has a package name, a class name, property
fields, property getters and property setters (bold font). However, it depends on your data
model (grey font), to generate the source code of the JavaBean.

The idea looks simple. However, writing a code generator is more than apply a model to a
template. Unlike dynamic page templates like JSP or PHP, a code generator generates a
semi-finished product (if not the full system). For example, to generate a Java EE web
application, the code generator may need to generate JSP, struts-config.xml, Struts Forms,
Struts Action, BO, DAO, Hibernate hbm files etc. If it is a web service, JSP and Struts
components is no longer necessary, the code generator should generate deploy.xml for Apache
AXis.

In the other words, different application will have different code generation configuration
(codegen config). Handling it with a simple template engine is possible, but it may be very hard
to maintain. The author of Codejen Framework have about three year experience developing
source code generator. Codejen Framework is the framework for the author to develop his third
generation of code generator. The framework is simple and flexible (lightweight) for code
generator development. The following sections will give the reader the step-by-step guideline
to write a code generator.

! Template + data model = output is a chapter title of Freemarker Manual

Framework Configuration

For quick start, it is recommended to download the all-in-one package. It has the following
third-party library dependencies:

Apache Jakarta Commons BeanUTtils (http://jakarta.apache.org/commons/beanutils/)

Apache Jakarta Commons Digester (http://jakarta.apache.org/commons/digester/)

Apache Jakarta Commons Logging (http://jakarta.apache.org/commons/logging/)

FreeMarker (http://freemarker.sourceforge.net/)

Mozilla Rhino (http://www.mozilla.org/rhino/)

FreeMarker and Mozilla Rhino dependency can be removed by downloading the standalone
package of Codejen core framework library.

To use Codejen framework, just put the dependency libraries into the class path (run-time) or
build path (compile time).

Your First Code Generator

A code generator is composed of three parts:

1. Model factory — creates a model from a file (driver mode) or look up a model from an
existing application (plug-in mode).

2. Codegen config — specifies what template is going to be used, the output of the source
code. If the model is used to generate many files, it configuration will also need to know
how to extract the elements from the model and how to name the output files.

3. Templates — specifies the result of the output. The syntax is depends on the template
engine used. The common template engines in Java are Apache Jakarta Velocity, Eclipse
JET, and FreeMarker.

In this section, we are going to build a code generator that simply gets the model from a
properties file. The properties file uses the class name as the key. The value specifies whether it
is a class or an interface:

A=interface
B=class
C=interface

The code generator will generate
- aclass or an interface for each entry
- code generation report that summarizes the result

Model Factory

The model factory simply creates an instance of code generator with the codegen config, loads
the properties file as the model, and prints the exceptions:

// imports are snipped

public class Main {
public static void main(String[] args) throws Exception{
CodeGenerator generator = new CodeGenerator(*'config.xml'™);
Properties prop = new Properties();
InputStream in = new FilelnputStream(*'model.propearties™);

prop. load(in); Load the codegen
generator .setModel (pr- ; config.

generator.run(); |

List<Throwable> errors = genera etErrors(Q); Proerties file as the
for (Throwable error : errors) { P

error-printStackTracggli\\\\\\\\\\‘ model. |
} } Prints the errors, if

1 exist.

Code Generation Configuration

The codegen config specifies the templates to be used as well as the output path. Like Apache’s
Ant builder, the XML used does not have a rigid DTD or schema. Generally, the structure of
the XML likes the following table?.

Element attr[], elements Description

config (property | include | template)* Root element of codegen config.

property attr[key, value] Property of the config. It can be
used in ${key} syntax.

include attr[file] Another config file to be
included in the current codegen
config.

template attr[class, ISA], modelExtractor, A template specification.

fileNameGenerator, postProcessor*

modelExtractor attr[class, ISA] Extract the element from the
data model.

fileNameGenerator | attr[class, ISA] Generate the file name of each
element.

Postprocessor attr[class, ISA] Process the generated output.

ISA in the table means Implementation Specific Attributes. ISA allows codegen developers to
specify the parameters creating their templates, post processors, model extractors and file name
generators. For the detail, please refer to More Sophisticated Code Generator.

Code Generation Report

Generating the report is a one-to-one model. A model is going to generate one and only one
output. The following codegen config generates the code generation report:

<config>
<property key="rootDir" value="F:/java/workspace/codejen/src/sample’ />
<property key="templateDir" value="${rootDir}" />

<property key="jsDir" value="${rootDif?“‘7>\~__________ ${rootDir} will be

<property key="outputDir" value="${rootDir}/output"” /> expanded to its value.

<include file="${rootDir}/class-config.xml" />

<template class:"org-sf-codejen_frggﬁarke[ifiiiﬁiifiiiiTﬁiate"
templateDir="${templateDir}" Includes the config
templateFile="report.ftl" for generating classes
outputDir="${outputDir}’ and interfaces.
outputFile="report.txt" I
mode IName=""map"" ISA are the properties
canOverwrite="true"> of

</template> FreeMarkerTemplate

</config>

2 The second column of the table attr[], elements denotes the attribute within the square brackets, "[]", and the
nesting element of the current element. "|" within brackets, ()", means it can be either one element. "*" means the
specified element is optional and can be repeated.

As described in the table above, ${key} of the property element will be expanded to its value.
When the value of outputDir is ${rootDir}/output, it means outputDir property is
F:/java/workspace/codejen/src/sample/output in this configuration.

For the ISA of the template, the JavaDoc of org.sf.codejen.freemarker.FreeMarkerTemplate
specifies the property of the implementation. All properties can be used as the attributes in the
element.

Class and Interface

The following codegen config (class-config.xml) generates the classes and the interfaces:

<config>
<template class="org.sf.codejen.freemarker.FreeMarkerTemplate"

templateDir="${templateDir}"
templateFile="javaclass.ftl"
outputDir="${outputDir}"
mode IName=""entry"’

- model name is map
- Load modelExtractor.js
- Run extractModel(map)

canOverwrite="true">
<modelExtractor class="org.sf.codejen/js.JsModelExtractor""

script="${jsDir}/modelExtractor. js;javascript:extractModel (map)"
mode IName=""map"* />
<FileNameGenerator class="org.sf.codejen.js.JsFileNameGenerator"
script="javascript:entry.key + "_.java™"
mode IName=""entry* />
</template>
</config>

Generating classes and interfaces is a one-to-many model. One model is going to produce
many files. In this case, an entry in properties file is going to be a class or an interface. We need
a model extractor and a file name generator to set up the model and the name of the output file.

The script property of JsModelExtractor and JsFileNameGenerator shares the same
behavior. It loads (and compiles) the scripts separated by OS path separator (";" for Windows,
":" for Linux). The text after javascript: will be treated as interpretable script which will be
executed directly.

The script in modelExtractor.js:

function extractModel(map) {
var iter = map.entrySet().iterator();
var result = new java.util _ArrayList(Q);
while (iter.hasNext()) {
result.add(iter.next());

s

return result;
s
Templates

In Codejen Framework, FreeMarker is used as the default template implementation®. The
template of the report will like this:

<#function article noun>
<#if noun?lower_case?starts with("a") ||
noun?lower_case?starts with("e") ||
noun?lower_case?starts with("i*) ||

¥ Codejen Framework can be configured to use other template engines, even within the same codegen config.

noun?lower_case?starts with("o") ||
noun?lower_case?starts with(“"u®)>
<#return "an">
<#telse>
<#return "a">
</#if>
</#function>
Source Code Generation Report

<#fassign keySet = map?keys>
<#list keySet as key>

${key} is ${article(map[key]D} ${map[key]}.
</#list>

${keySet?size} files are generated.

The template for generating classes and interface is much simpler:

public ${entry.value} ${entry.key} {
}

Output
Four files will be generated under the output directory.

report.txt

Source Code Generation Report

A i1s an interface.
C i1s an interface.
B is a class.

3 files are generated.

A.java

public interface A {
}

B.java

public class B {
}

C.java

public interface C {
}

More Sophisticated Code Generator

In most cases, you only need to specify the modelExtractor and the fileNameGenerator.
However, postProcessor may required for situation like source code formatting (a.k.a.
beautification) or further syntax checking. The postProcessor element can be nested within the
template element like this:

<postProcessor class="org.sf.codejen.js.JsTemplateProcessor"
script="formatting.js;javascript:format(tpl)"
mode IName=""tpl"" />

Default Implementation Specifications

To make the framework more ready to use, the default template specification, the model
extractor, the file name generator, and the template processor are already implemented with
FreeMarker and Mozilla Rhino (a JavaScript engine).

Template Specification

Using the all-in-one framework library, org.sf.codejen.freemarker.FreeMarkerTemplate
can be used with the following implementation specific attributes (ISA):

‘ Default Description

ISA Required
templateFile | Yes N/A The path of template file. Relative to
templateDir.
outputFile Yes when no N/A Filename of the generated file.
modelExtractor is Relative to outputDir. If
nested within the modelExtractor does not exist and
template element. outputFile is empty, no file will be
generated.
templateDir | No working | The directory to load the template.
directory
outputDir No working | The output directory of the source
directory | codes generated.
modelName | No model The model name used within the
template. Accessed by ${model}.
canOverwrite | No true Indicate whether the generated
output should overwrite the existing
file.

Model Extractor, File Name Generator, and Template Processor

Model extractor, file name generator, and template processor (used in postProcessor) in
Mozilla Rhino implementation are org.sf.codejen.js.JsModelExtractor,
org.sf.codejen.js.JsFileNameGenerator, and org.sf.codejen.js.JsTemplateProcessor
respectively. They share the same ISA:

ISA
script

Required Defauld Description

Yes N/A

The path of the script files to be used separated by OS
dependent path separator. i.e. ;" for Windows, ":" for
Linux/Unix.

If it is only a one line script, javascript: can be used to
execute the script directly. For example:

jJavascript: entry.key + "_java“

Furthermore, script files and script can be mixed
together like:
${jsDir}/modelExtractor.js;

Javascript:extractModel (map)

modelName

No

model

Name of the context variable. For example, if
modelName is entry, the script attribute will be

jJavascript: entry.key + "_java“

If modelName is model, the script attribute will be
jJavascript: model.key + "_java“

10

